skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Munoz-Arriola, Francisco"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Raza, Mudassar (Ed.)
    Cosegmentation is a newly emerging computer vision technique used to segment an object from the background by processing multiple images at the same time. Traditional plant phenotyping analysis uses thresholding segmentation methods which result in high segmentation accuracy. Although there are proposed machine learning and deep learning algorithms for plant segmentation, predictions rely on the specific features being present in the training set. The need for a multi-featured dataset and analytics for cosegmentation becomes critical to better understand and predict plants’ responses to the environment. High-throughput phenotyping produces an abundance of data that can be leveraged to improve segmentation accuracy and plant phenotyping. This paper introduces four datasets consisting of two plant species, Buckwheat and Sunflower, each split into control and drought conditions. Each dataset has three modalities (Fluorescence, Infrared, and Visible) with 7 to 14 temporal images that are collected in a high-throughput facility at the University of Nebraska-Lincoln. The four datasets (which will be collected under the CosegPP data repository in this paper) are evaluated using three cosegmentation algorithms: Markov random fields-based, Clustering-based, and Deep learning-based cosegmentation, and one commonly used segmentation approach in plant phenotyping. The integration of CosegPP with advanced cosegmentation methods will be the latest benchmark in comparing segmentation accuracy and finding areas of improvement for cosegmentation methodology. 
    more » « less
  2. In this study, a comparative analysis of three satellite precipitation products including Tropical Rainfall Measuring Mission (TRMM-3B43 V7), Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR), and Climate Hazards Group InfraRed Precipitation with Station (CHIRPS V2) with ground-measured Indian Meteorological Department (IMD) precipitation data were performed to estimate the meteorological drought in the Bundelkhand region of Central India. The high-resolution CHIRPS data showed the closest agreement with the IMD precipitation and well captured the drought characteristics. The Standardized Precipitation Index (SPI) identified seven major droughts events during the period of 1981 to 2016. Appropriate calibration and validation were performed for drought forecasting using the Auto-Regressive Integrated Moving Average (ARIMA) model. The forecasting result showed a reasonably good agreement with the observed datasets with the one-month lead time. The outcomes of this study have policy level implications for drought monitoring and preparedness in this region. 
    more » « less